# **Bachelor of Technology in Engineering Physics**



| Programme Level          | Under Graduate         |
|--------------------------|------------------------|
| Year of Commencement     | 2019                   |
| Minimum Duration         | 4 Years (8 Semesters)  |
| Maximum Duration         | 6 Years (12 Semesters) |
| Senate Meeting reference | 20.9/30.4              |

### **B.Tech. in Engineering Physics at IIT Mandi**

#### Preamble to the program:

Engineering Physics (EP) at IIT Mandi is a unique program, which is designed to prepare graduates with rigorous foundation in Physics along with Engineering in order to tackle today's technology challenges. EP will enhance the cross-functionality and bridge the gap between pure science and traditional engineering disciplines which conventionally are pursued independently. This is necessary because in today's world major scientific and technological breakthroughs happen in a multi-disciplinary environment where scientists from pure science work along with engineers. It is, therefore, highly important to inculcate both scientific and technological aspects, and the EP programme will serve this purpose.

The curriculum for EP at IIT Mandi introduces students to a wide variety of fields in pure as well as applied Physics. The core courses cover basic areas in Physics, such as Quantum Mechanics, Condensed Matter Physics; as well as basic courses in Mathematics and Engineering. In addition to the compulsory courses, students will complete a certain number of elective courses in Physics intended to provide a good exposure in various directions in both theoretical and applied Physics. The vision is to cater to and enhance the curiosity of students with varied interests in the field. Besides, a number of courses in other branches of science and engineering, along with humanities and social sciences, will also be available as electives. This will allow students to explore their areas of interest. If a student is inclined towards electrical engineering, s/he can take the requisite number of courses/credits in that program and get a minor.

Interdisciplinary areas in physical sciences and engineering, like Quantum technology, Photonics, Nanoelectronics and Artificial Intelligence, promise to become dominant in the 21<sup>st</sup> century. EP that teaches science underlying engineering will prepare students to apply Physics to tackle these 21st century engineering challenges and vice-versa. Additionally, EP will also prepare students to pursue an advanced degree in Physics as well as engineering.

#### **Objectives of the program**

After the completion of the degree, students would

- be prepared with a varied range of expertise in different aspects of physics and engineering
- acquire solid understanding of both the theory and experimental physics to take up the challenging future problems.
- be better trained professionals to cater the growing demand for interdisciplinary professionals with engineer cum physicist in industry.

## Approved in 30th Senate (03-02-2021)

## Revised list of Core courses for Engineering Physics Program (Total Credits for discipline core = 33)

| Sr.<br>No. | Code                      | Course Title                                                                                                                                                                                 | Lecture | Tutorial          | Practical | Total<br>Credit   |
|------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-----------|-------------------|
| 1          | EP301                     | Engineering Mathematics-2                                                                                                                                                                    | 3       | 1                 | 0         | 4                 |
| 2          | PH301                     | Quantum Mechanics and Applications                                                                                                                                                           | 3       | 0                 | 0         | 3                 |
| 3          | PH302                     | Introduction to Statistical Mechanics                                                                                                                                                        | 3       | 0                 | 0         | 3                 |
| 4          | PH501                     | Solid State Physics                                                                                                                                                                          | 3       | 0                 | 0         | 3                 |
| 5          | EE311                     | Device Electronics for Integrated Circuits                                                                                                                                                   | 3       | 0                 | 0         | 3                 |
|            | <del>ME352</del><br>EP302 | Finite Element Methods in Engineering replaced with<br>Computational Methods for Engineering<br>as approved by Senate in its 30 <sup>th</sup> meeting held on 3 <sup>rd</sup> February, 2021 | 3<br>2  | <del>0</del><br>1 | 0<br>0    | <del>३</del><br>3 |
| 7          | EP402P                    | Engineering Physics Practicum                                                                                                                                                                | 1       | 0                 | 5         | 4                 |
| 8          | PH502                     | Photonics                                                                                                                                                                                    | 3       | 0                 | 0         | 3                 |
| 9          | EP403                     | Physics of Atoms and Molecules                                                                                                                                                               | 3       | 0                 | 0         | 3                 |
| 10         | EP401P                    | Engineering of Instrumentation                                                                                                                                                               | 1       | 0                 | 5         | 4                 |

| Sr.No. | Core/Elect<br>ive | Course Name                         | Lecture<br>(L) | Tutorial<br>(T) | Practical<br>(P) | Credit<br>(C) |
|--------|-------------------|-------------------------------------|----------------|-----------------|------------------|---------------|
| 1.     | IC-110            | Engineering<br>Mathematics          | 2              | 1               | 0                | 3             |
| 2.     | IC-152            | Data Science-1                      | 3              | 0               | 0                | 3             |
| 3.     | IC-152P           | Data Science-1 Lab                  | 0              | 0               | 3                | 2             |
| 4.     | IC-160            | Electrical Systems<br>Around Us     | 3              | 0               | 0                | 3             |
| 5.     | IC-160P           | Electrical Systems<br>Around Us Lab | 0              | 0               | 3                | 2             |
| 6.     | IC-140            | Graphics for design                 | 2              | 0               | 3                | 4             |
| 7.     | IC-101P           | Reverse Engineering                 | 0              | 0               | 3                | 2             |
| 8.     | IC                | HSS Course                          | 3              | 0               | 0                | 3             |
| 9.     | IC                | IISS - Creative<br>understating     |                |                 |                  | 1             |
|        |                   |                                     |                |                 | Total<br>Credits | 23            |

Completed Credits: 23 Remaining Credits: 137

2 d

100

. . .

| Sr.No. | Core/Elect<br>ive | Course Name                           | Lecture | Tutorial | Practical        | Credit |
|--------|-------------------|---------------------------------------|---------|----------|------------------|--------|
|        |                   |                                       | (L)     | (T)      | (P)              | (C)    |
| 1.     | IC-111            | Linear Algebra                        | 3       | 0        | 0                | 3      |
| 2.     | IC-252            | Data Science-2                        | 3       | 0        | 2                | 4      |
| 3.     | IC-161            | Applied Electronics                   | 3       | 0        | 0                | 3      |
| 4.     | IC-161P           | Applied Electronics<br>Lab            | 0       | 0        | 3                | 2      |
| 5.     | IC-142            | Engineering<br>Thermodynamics         | 3       | 1        | 0                | 4      |
| 6.     | IC-141            | Product Realization<br>Technology     | 2       | 0        | 0                | 2      |
| 7.     | IC-141P           | Product Realization<br>Technology Lab | 0       | 0        | 3                | 2      |
| 8.     | IC                | HSS Course                            | 3       | 0        | 0                | 3      |
|        |                   |                                       |         |          | Total<br>Credits | 23     |

Completed Credits: 23+23=46 Remaining Credits: 114

| Sr.No. | Core/Elect<br>ive | Course Name                         | Lecture | Tutorial | Practical        | Credit |
|--------|-------------------|-------------------------------------|---------|----------|------------------|--------|
|        | ive               |                                     | (L)     | (T)      | (P)              | (C)    |
| 1.     | IC-121            | Mechanics of particles<br>and waves | 3       | 0        | 0                | 3      |
| 2.     | IC-130            | Applied Chemistry for<br>Engineers  | 3       | 0        | 0                | 3      |
| 3.     | IC-130P           | Chemistry Practicum                 | 0       | 0        | 3                | 2      |
| 4.     | C-1,<br>EP301     | Engineering<br>Mathematics-2        | 3       | 0        | 0                | 3      |
| 5.     | IC-352            | Data Science-3                      | 3       | 0        | 0                | 3      |
| 6.     | IC-240            | Mechanics of Rigid<br>Bodies        | 3       | 0        | 0                | 3      |
| 7.     | IC                | HSS Course                          | 3       | 0        | 0                | 3      |
|        |                   |                                     |         |          | Total<br>Credits | 20     |

Completed Credits: 23+23+20=66 Remaining Credits: 94

190

 $e^{\frac{\pi}{2}}$ 

3.8

| Sr.No. | Core/Elect | Course Name                                          | Lecture | Tutorial | Practical        | Credit |
|--------|------------|------------------------------------------------------|---------|----------|------------------|--------|
|        | ive        |                                                      | (L)     | (T)      | (P)              | (C)    |
| 1.     | IC-221     | Foundation of<br>electrodynamics                     | 3       | 0        | 0                | 3      |
| 2.     | IC-222P    | Physics Practicum                                    | 0       | 0        | 3                | 2      |
| 3.     | IC-221     | Signals and systems                                  | 3       | 0        | 0                | 3      |
| 4.     | IC-241     | Materials Science for<br>Engineers                   | 3       | 0        | 0                | 3      |
| 5.     | IC-242     | Continuum Mechanics                                  | 3       | 0        | 0                | 3      |
| 6.     | IC-201P    | Design Practicum                                     | 0       | 0        | 6                | 4      |
| 7.     | IC-136     | Understanding<br>Biotechnology & Its<br>Applications | 3       | 0        | 0                | 3      |
|        |            |                                                      |         |          | Total<br>Credits | 21     |

Completed Credits: 23+23+20+21=87 Remaining Credits: 73

- 1

1.5

×\_ė

| Sr.No. | Core/Elect<br>ive | Course Name                                   | Lecture<br>(L) | Tutorial<br>(T) | Practical<br>(P) | Credit<br>(C) |
|--------|-------------------|-----------------------------------------------|----------------|-----------------|------------------|---------------|
| 1.     | C-2,<br>PH301     | Quantum Mechanics<br>and Applications         | 3              | Ō               | 0                | 3             |
| 2.     | C-3,<br>EE311     | Device Electronics for<br>Integrated Circuits | 3              | 0               | 0                | 3             |
| 3.     | C-4,<br>EP302     | Computational<br>Methods for<br>Engineering   | 3              | 0               | 2                | 4             |
| 4.     | DE-1              | Discipline Elect 1                            | 3              | 0               | 0                | 3             |
| 5.     | DE-2              | Discipline Elect2                             | 3              | 0               | 0                | 3             |
| 6.     | IC                | HSS Course                                    | 3              | 0               | 0                | 3             |
|        |                   |                                               |                |                 | Total<br>Credits | 19            |

Completed Credits: 23+23+20+21+19=106 Remaining Credits: 56

ad l

| Sr.No. | Core/Electi<br>ve | Course Name                                              | Lecture<br>(L) | Tutorial<br>(T) | Practical<br>(P) | Credit<br>(C) |
|--------|-------------------|----------------------------------------------------------|----------------|-----------------|------------------|---------------|
| 1.     | C-5, PH302        | Introduction to<br>Statistical Mechanics                 | 3              | 0               | 0                | 3             |
| 2.     | C-6, PH501        | Solid State Physics                                      | 3              | 0               | 0                | 3             |
| 3.     | C-7,<br>EP401P    | Engineering of<br>Instrumentation                        | 1              | 0               | 3                | 4             |
| 4.     | C8-PH502          | Photonics                                                | 3              | 0               | 0                | 3             |
| 5.     | Е                 | <b>Open/Free Elective</b>                                | 3              | 0               | 0                | 3             |
| 6.     | DP301P(E)         | Interdisciplinary<br>Socio-Technical<br>Practicum (ISTP) |                |                 |                  | 4             |
|        | mean and an an    |                                                          |                |                 | Total<br>Credits | 20            |

Completed Credits: 23+23+20+21+19+20=126 Remaining Credits: 34

. .

|        | Ŀ                 | B.Tech. (Engineering I           | -nysics) -     | - /             | 8 // ·           | -             |
|--------|-------------------|----------------------------------|----------------|-----------------|------------------|---------------|
| Sr.No. | Core/Electi<br>ve | Course Name                      | Lecture<br>(L) | Tutorial<br>(T) | Practical<br>(P) | Credit<br>(C) |
| 1.     | C-<br>9,EP402P    | Engineering Physics<br>Practicum | 1              | 0               | 3                | 4             |
| F2.    | DE-3              | Discipline Elective              | 3              | 0               | 0                | 3             |
| 3.     | DP401P(E)         | MTP-I                            | 0              | 0               | 0                | 3             |
| 4.     | Е                 | Open/Free Electives (2<br>No.)   | -              | -               | -                | 6             |
|        |                   |                                  |                |                 | Total<br>Credits | 16            |

Completed Credits: 23+23+20+21+19+20+16=142 Remaining Credits: 18

| Sr.No. | Core/Electi<br>ve | Course Name                    | Lecture | Tutorial | Practical        | Credit |
|--------|-------------------|--------------------------------|---------|----------|------------------|--------|
|        |                   |                                | (L)     | (T)      | (P)              | (C)    |
| 1.     | DE-4              | Disci. Elective                | 3       | 0        | 0                | 3      |
| 2.     | DP402P(E)         | МТР-П                          |         | -        | 5                | 5      |
| 3.     | Е                 | Open/Free Electives (3<br>no.) | -       | 180      | -                | 9      |
|        |                   |                                |         |          | Total<br>Credits | 17     |

Completed Credits: 23+23+20+21+19+20+16+17=159 Internship: 2

Total credits completed: 159+2 (internship) = 161

5

÷\_1

 List of Courses, as decided by the CIG, from Physics, Mathematics, Electrical, Mechanical and Computer Science are included in the Discipline Electives. Tentative list of elective courses from Physics are listed below.

18.5

1

81

| Sr.No. | Code  | Course Name                                       |
|--------|-------|---------------------------------------------------|
| 1.     | PH503 | Laser and Applications                            |
| 2.     | PH503 | Organic Optoelectronics                           |
| 3.     | PH507 | X-ray as a probe to study the material properties |
| 4.     | PH508 | Magnetism and Magnetic Materials                  |
| 5.     | PH601 | Mesoscopic Physics and Quantum Transport          |
| 6.     | PH603 | Advanced Condensed Matter Physics                 |
| 7.     | PH612 | Nuclear and Particle Physics                      |
| 8.     | PH524 | Atomic and Molecular Physics                      |
| 9,     | PH613 | Special Topics in Quantum Mechanics               |
| 10.    | PH605 | Superconductivity                                 |