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The goal of this talk is to derive a means of calculating the intrinsic curvature of a
manifold: the Riemann Curvature Tensor. We begin with an introduction to covariant dif-
ferentiation, showing that since the basis vectors of a coordinate system change, we must
utilize a correction term to obtain a derivative-like formulation for covariant vectors, known
as the covariant derivative: ∇rVm = ∂rVm − Γt

rmVt. Much like derivatives are the generators
of infinitesimal translations, covariant derivatives generate infinitesimal parallel transport
of vectors. We subsequently derive the equation for the Christoffel symbols, assuming a
torsion-free physical system. By exploiting the symmetry of the covariant indices, we find
that Γt

mn = 1
2g

rt[∂ngrm+∂mgrn−∂rgmn]. We also discuss the covariant derivative of a mixed
tensor, ∇µT
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σ . By combining ∇µT

λ
ν and ∇rTm, we obtain the

Riemann Curvature Tensor, Rt
srn = ∂rΓ

t
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t
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ps. We summarize this

result in the context of General Relativity, and demonstrate the four steps to deriving the
metric for a given spacetime: calculate the Christoffel symbols, substitute it into the Riemann
curvature tensor, contract it into the Ricci tensor, and finallly substitute it into Einstein’s
field equation.
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