
 Approval: 6
th

 Senate Meeting

Course Name : Algorithm Design and Analysis

Course Number : CS-403

Credits : 3-0-2-4

Prerequisites : CS-3xx (ADSA) or equivalent, or the instructor’s consent

Intended for : UG

Distribution : Discipline elective for CS and EE

Semester : 5
th
 or 6

th

Preamble: The proposed elective course, building on top of discipline core course on Advanced Data

Structures and Algorithms (ADSA), offers first formal introduction to various common algorithm design

techniques, methods for analyzing the performance of corresponding algorithms and improving their

efficiency, and to provide performance guarantees. The theoretical aspects of this course are going to be

supplemented by comprehensive practice exercises and weekly programming labs worth one lab credit.

Objective: After the students have gone through a course on discrete structures, where they learn formal

and abstract representations of data and its manipulation, and another course on data structures, where

they learn concrete implementations and usage of such discrete structures, a first course on algorithm

design and analysis should teach the students how to design an efficient algorithm for a given

computational task using one or more of such data structures, analyze performance of a given algorithm,

and provide performance guarantees. On completion of such a course, students should be able to

- analyze the asymptotic performance of algorithms and write formal correctness proof for

algorithms

- demonstrate their familiarity with major algorithm design paradigms and methods of analysis

- demonstrate their knowledge of major algorithms and data-structures corresponding to each

algorithm design paradigm

- construct efficient algorithms for common computer engineering design problems

- classify a problem as computationally tractable or intractable, and discuss strategies to address

intractability

Further, as programming is an integral part of the CS education, in this course students should implement

the algorithms they learn and compare the corresponding achievable performance (computation time,

memory requirement, etc.) with the corresponding asymptotic performance bounds they learn to compute

in this course.

Syllabus:

1. Review of Data Structures. (3 L)

2. Program Performance: Time and space complexity, average and worst case analysis, asymptotic

notation, recurrence equations and their solution. (3 L)

3. Algorithmic Techniques: Search techniques (backtracking and bounding), Sorting algorithms -

lower bound, sorting in linear time, Greedy algorithms (Huffman coding, knapsack), Divide and

conquer - Master theorem, Dynamic programming (0/1 knapsack, Traveling salesman problem,

matrix multiplication, all-pairs shortest paths), Randomization, Randomized data structures: Skip

Lists, Universal and perfect Hash functions, Backtracking, Branch and bound. (15 L)

For each algorithm technique the following is expected: Description of the technique, explanation

when an algorithm design situation requires it, examples of algorithms based on this technique,

analysis of performance these algorithms.

4. Graph Algorithms: DFS and BFS, biconnectivity, spanning trees; Minimum cost spanning trees:

Kruskal’s, Prim’s, and Sollin’s algorithms; Path finding and shortest path algorithms; Topological

sorting; Matching, Network Flows; Bipartite graphs. (6 L)

5. Computational complexity: Problem classes: P, NP, NP-complete, NP-hard. Reduction. Cook’s

theorem. Examples of NP-complete problems. (6 L)

6. Competitive analysis (3 L)

7. Amortized analysis: aggregate analysis, accounting, potential method. (3 L)

8. Other topics: Number theoretic algorithms (GCD, modulo arithmetic, Chinese remainder

theorem), string matching algorithms (Rabin Karp algorithm, string matching with Finite State

Automata, KMP (Knuth-Morris-Pratt) algorithm, Boyer-Moore algorithm), Strassen’s matrix

multiplication, FFT, integer and polynomial arithmetic. (3 L)

9. Advanced topics: Lower-bound techniques: adversary arguments, information-theoretic bounds.

Reference Books:

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press,

3/e, 2009.

2. J. Kleinberg and E. Tardos, Algorithm Design, Pearson, 2006.

3. S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani, Algorithms, McGraw-Hill, 2006.

4. S. S. Skiena, The Algorithm Design Manual, Springer, 2/e, 2008.

