
 Approval: 10
th

 Senate Meeting

Course Name: Design of Concurrent Software

Course code: CS546

Credits: 3-0-0-3

Prerequisites: programming & data structures; basics of operating systems, basics of

networks.

Intended for: BTech, MTech, MSc, MS/PhD in the area.

Elective/Core: Discipline elective for BTech CSE and EE, free elective for others

Semester: Any

Preamble:
In concurrent software, several statements or blocks of code execute simultaneously. This is
in contrast to a sequential programme where exactly one instruction executes at a time.

Concurrency serves two purposes: to handle asynchronous events (eg, mouse click, arrival of

network packet, change of temperature) or to improve performance by making use of

multiple CPUs. The CPUs could be on one node with shared memory (parallel hardware), or

they could be independent nodes, each with its own memory and disk, connected by a

network (distributed hardware).

The objectives of this course are to learn the theory and practice necessary for writing

efficient parallel solutions for scientific and engineering computation, and efficient concurrent

solutions for Big Data processing.

Course Outline:
After a review of parallel and distributed hardware, we will study the principles of
concurrency and examine techniques for designing efficient concurrent software. The course

will involve theory, implementation using current languages (MPI, Java and Map Reduce)

and evaluation of software performance.

Modules:

1. Introduction: Need for concurrent programs; the critical section problem; parallel and

distributed architectures.

2. Programming models: levels of parallelism; data distribution for arrays; shared

variables and message-passing; processes and threads.

3. Performance evaluation: metrics for parallel programs; design of experiments,

measurement techniques, confidence levels.

4. Parallel programming: the MPI message-passing model; point-to-point and collective

communication modes; process groups; MPI and Pthreads; testing for correctness and

for performance; debugging. Optionally: CUDA/OpenCL for GPU programming.

5. Concurrency in Java: Java memory model; threads; RMI; locking; scalability;

selected concurrency design patterns.

6. Big Data Processing: the Map Reduce programming model; Map Reduce architecture

and implementations; Map Reduce algorithm design; limitations of the Map Reduce

model, extensions to solve these.

Textbooks:

1. T. Rauber & G. Rünger, Parallel Programming for Multicore and Cluster Systems,

Springer, 2007.

2. B. Goetz et al., Java Concurrency in Practice, Pearson, 2006.

3. J. Lin & C. Dyer, Data-Intensive Text Processing with Map Reduce, Morgan &

Claypool, 2010

References:

1. E.D. Lazowska et al., Quantitative System Performance, Prentice-Hall, 1984.

2. K.S. Trivedi, Probability and Statistics with Reliability, Queueing and Computer

Science Applications, Prentice-Hall, 1982.

3. Doug Lea, Concurrent Programming in Java: Design Principles and Patterns, 2
nd

ed., Pearson, 2000.

4. M. Subramanian, Network Management: Principles and Practice, 2
nd

ed., Pearson,

2009. (Chap 9.4)

5. D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, 2
nd

ed., Morgan Kaufmann, 2012.

