

Course number : ME522
Course Name : High-Performance Scientific Computing
Credit : 3
Distribution : 2-0-1-3
Intended for : BTech / MTech / MS / MSc / PhD
Prerequisite : Engineering Mathematics, Introduction to Programming or an

equivalent course
Mutual Exclusion : CS508 (Introduction to Heterogeneous Computing)

1. Preamble:

To introduce high-performance scientific computing (HPSC) to the postgraduate students in

engineering and sciences starting their research in numerical sciences (e.g. computational

mechanics, molecular dynamics, etc.). This course will cover efficient programming

techniques (including Python and shell scripting), version control, parallel programming

using OpenMP and MPI, graphics and visualisation, and cloud computing. These techniques

will help the students carry out their numerical research more effectively. Fortran/C will be

used as the base programming language for implementing OpenMP and MPI directives. Each

course lecture is supplement by a one-hour lab helping reinforce the concepts. In addition,

the course will make significant use of the HPC cluster of IIT Mandi for course assignments

and projects, helping students get comfortable with the infrastructure for future use in

research.

2. Course Modules with quantitative lecture hours:

Introduction to the course: Definition of HPC, history and latest developments,

Moore’s law, introduction to scientific computing, challenges with setting up HPC/data

centres (storage, power supply and thermal management), topology of processors,

demonstration of the use of HPC to solve a heat conduction problem, sparse matrices,

binary storage, fixed-point and floating-point real numbers, IEEE standards, virtual

machines, Unix shell and commands. (2 Hours)

Introduction to programming languages, version control and makefiles: Introduction

to compiled programming languages (precision, compiler optimisation, timing codes,

LAPACK and BLAS), Git (Git commands, Github, graphical Git tools, Git demo), build

systems and dependency checking. (6 Hours)

Python: Introduction, interpreted versus compiled languages, object-oriented language,

syntax, conditionals, loops, functions, modules, data structures (lists and arrays), mutable

and immutable objects, NumPy, linear algebra in Python, Pylab, SciPy, IPython, IPython

notebook (Jupyter), unit test, nosetests, graphics and visualisation (matplotlib, Mayavi,

Visualisation Tool Kit, ParaView), debugging, just-in-time compilers for Python (such as

PyPy, Numba, LLVM), ASCII and binary output, HDF and NetCDF binary formats,

demonstrations. (4 Hours)

Parallel computing: Introduction to parallelization, computer architecture (memory

hierarchy, CPU, registers, cache), latency and throughput, cache lines, spatial locality,

array ordering, cache collisions, padding, parallelizing algorithms (strip mining and loop

reordering), shared-memory and distributed-memory parallelism, threads, parallelization

issues (contention, dependencies, synchronization, and cache coherence), scaling

(Amdahl’s law, speedup, strong and weak scaling), SPMD (single program, multiple

data) and SIMD (single instruction, multiple data), fine grain and coarse grain

parallelism.

OpenMP: introduction, fork and join, synchronizations, race conditions, compiler

directives, heap and stack memory, barriers, overheads, reductions, data dependencies,

thread-safe functions, pseudo-random number generators in parallel, example codes, and

demonstrations.

MPI: introduction, message passing, domain decomposition, MPI communicators, MPI

modules and functions (broadcast, reduce, allreduce, MPI send and receive), master–

worker paradigm, example codes, and demonstrations.

Comparison of OpenMP and MPI – numerical integration using adaptive quadratures

Use of HPC clusters for computing (10 Hours)

Scientific computing: Solution to the steady-state diffusion problem using the finite

difference method, Jacobi method with OpenMP and MPI, numerical integrals using

Monte Carlo (MC) method, solution to Poisson problem using MC method (3 Hours)

Cloud computing: Cloud computing demonstration using machine images (1 Hour)

Laboratory/practical/tutorial Modules: One hour lab following each lecture

Details of labs:

Hours 1 – 2: Introductory heat conduction problem and linear algebra, and Unix shell

Hours 3 – 8: Roots of a polynomial using numerical methods, version control, makefiles

Hours 9 – 12: Python lists and modules using numerical integration, Jupyter notebook,

Numpy arrays and timing codes

Hours 13 – 22: Vector normalisation, Approximation of pi, adaptive quadratures, norms of

matrices, LU factorisation, iterative methds to solve linear systems, Finite difference method

for solving diffusion equation. All problems using OpenMP and MPI.

Hours 23 – 25: Monte Carlo methods to solve a steady-state diffusion problem

Hour 26: Cloud computing exercise

3. Text books:

No text book for this course

4. References:

L. R. Scott, T. Clark, B. Bagheri, Scientific Parallel Computing, Princeton
University Press, 2005.
C. Lin and L. Snyder, Principles of Parallel Programming, Pearson, 2008.
R. Chandra, L. Dagum, et. al., Parallel Programming in OpenMP, Academic Press,
2001.
M. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill
Education, 2003.
G. Karniadakis, R. Kirby II, Parallel Scientific Computing in C++ and MPI,
Cambridge University Press, 2003.
W. Gropp, E. Lusk, A. Skjellum, Using MPI, The MIT Press, 2014.
LD Fosdick, ER Jessup, CJC Schauble, G Domik An Introduction to High-
performance Scientific Computing, MIT Pres, 1996.

