

<u>IIT Mandi</u> <u>Proposal for a New Course</u>

Course number
Course Name: PH 609Course Name
Credit Distribution: Theory of quantum collision and spectroscopyCredit Distribution: 3-0-0-3Intended for
Prerequisite: UG/PG/I-PhD/PhD electivePrerequisite: PH301/PH513 (Quantum Mechanics), PH524/EP403(Physics of
Atoms and Molecules), PH613: Special topics in Quantum Mechanics

Mutual Exclusion

1. Preamble:

The objective of this course is primarily to provide a detailed understanding in the field of collision theory and also to provide an introduction to some advanced topics in many-body theory. It introduces the basic formalism in scattering theory and its applications to a number of cases that are of current research interests. Further it introduces some of the many-body theoretical techniques that play very crucial role in order to understand the electronic and photonic collisions processes.

2. Course Modules with quantitative lecture hours:

: None

Module 1: Scattering theory-Quantum collisions: Review of Method of Partial wave analysis, and Integral equation of potential scattering; Lippman Schwinger equation, Born series and approximations, Applications of scattering: Coulomb scattering, Scattering by complex potential Scattering of identical particles, Pseudo-potential and Bethe-Peierls collision theory, Levinson's and Seaton's theorems.

Module 2: Resonant Scattering-Scattering of partial wave, Resonances in quantum collisions, Breit-Wigner formalism, Fano parameterization of Breit-Wigner formula, correlations induced resonances and shape resonances Broad Vs narrow resonances, Resonance life time, Eisenbud-Wigner-Smith formalism of time-delay in scattering, recent experiments

(8 hours)

Indi

Module 3: Many-body formalism

Many-body theory, electron correlations, Second quantization, Many-particle Hamiltonian in occupation number representation, Density fluctuations of electron gas in the Hartree-Fock method, introduction to density functional theory, Bohm-Pines approach to random phase approximation,

(12 hours)

Module4: Relativistic formulation-Foldy-Woutheysen transformations and separation of radial and angular parts of the Dirac equation, introduction to relativistic many body theory

(4 hours)

Module 5: Feynman diagrammatic methods-

PH606

2.

Schrodinger, Heisenberg and Dirac pictures, Dyson's chronological operator, Gell-Mann-Low Theorem, Rayleigh-Schrodinger perturbation methods and adiabatic switching, Feynman Diagrams, I Order Feynman Diagrams, II and higher order Feynman Diagrams, Linear response of electron correlations

2) Quar	ics of Atoms and Mole		(4 hours) & C. J. Joachain (Pearson, 2003) L.Fetter and J.D.Walecka (Dover,
19	eory of electron-atom		ke and C. J. Joachain (Plenum Press, evier, 1972)
5. Similarity with the existing courses: (Similarity content is declared as per the number of lecture hours on similar topics)			
S	No. Course Code PH613	Similarity Content 4 hrs	Approx. % of Content

6. Justification of new course proposal if cumulative similarity content is >30%: NA

4 hrs

10%